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This paper describes a new method for computing moments of the transverse relaxation time T2 from
measured CPMG data. This new method is based on Mellin transform of the measured data and its
time-derivatives. The Mellin transform can also be used to compute the cumulant generating function
of lnT2. The moments of relaxation time T2 and lnT2 are related to petro-physical and fluid properties
of hydrocarbons in porous media. The performance of the new algorithm is demonstrated on simulated
data and compared to results from the traditional inverse Laplace transform. Analytical expressions are
also derived for uncertainties in these moments in terms of the signal-to-noise ratio of the data.
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1. Introduction

In the past decade, NMR relaxation measurements using the
CPMG pulse sequence have been used to probe the pore-geometry
and fluid properties of hydrocarbons in porous media in grossly
inhomogeneous fields [1]. The acquired data are represented by

MðtÞ ¼
Z 1

0
e�t=T2 fT2 ðT2ÞdT2 þ �ðtÞ; t ¼ ½1;2; . . . ;N�tE: ð1Þ

The time constants T2 are often assumed to be a continuum.
Without loss of generality, the corresponding non-negative ampli-
tude fT2 ðT2Þ is referred to as the distribution of T2 relaxation times.
Here �(t) denotes the additive white, Gaussian noise (WGN) with
known statistics.

In Eq. (1), the measured data M(t) is related to the Laplace trans-
form of the unknown distribution fT2 ðT2Þ. In several applications, the
parameters of interest are specific moments of T2, which are used to
provide insight into the underlying physical process. For example,
the negative 0.4-th moment of T2 has been empirically related to pet-
ro-physical parameters such as irreducible water-saturation in
rocks. Similarly, the 0.2-th moment of T2 has been found to be a good
predictor of rock permeability [2]. The mean of the T2 distribution
denoted by hlnT2i is empirically related to rock permeability or
hydrocarbon viscosity. The width of the T2 distribution rln T2 is re-
lated to the pore size distribution in rocks [1]. In the study of hydro-
carbons using NMR, the average chain length of a hydrocarbon is
related to the 0.8-th moment of T2 relaxation time [3].
ll rights reserved.

kataramanan).
Traditionally, the inverse Laplace transform (ILT) is used to
estimate fT2 ðT2Þ from M(t). The moments of T2 are then computed
from the estimated T2 distribution. However, it is well-known
that the ILT is an ill-conditioned problem [4,5]. Small changes
in M(t) due to noise can result in widely different fT2 ðT2Þ. The
classical approach to the problem involves choosing the ‘‘smooth-
est” solution fT2 ðT2Þ that fits the data. This smooth solution is of-
ten estimated by minimizing a cost function Q with respect to
the underlying f [6,7],

Q ¼ kM � Kfk2 þ akfk2
; ð2Þ

where M is the measured magnetization data, K is the matrix of the
discretized kernel e�t=T2 and f is the discretized version of the under-
lying density function fT2 ðT2Þ in Eq. (1). The first term in the cost
function is the least-squares error between the data and the fit from
the model in Eq. (1). The second term denotes Tikhonov regulariza-
tion and incorporates smoothness in the expected solution of the
density function.

The mathematical definition of smoothness as well as the va-
lue of a are subjective. The parameter a denotes the compromise
between the fit to the data and an a priori expectation of the den-
sity function. When a is too small, the inversion problem is
unstable with small changes in M(t) resulting in widely different
estimates for fT2 ðT2Þ. When a is too large, the solution does not
sufficiently take the measured data into account. In this case,
the estimated density function, fT2 ðT2Þ is stable, but results in a
poor fit to the data. In the literature, there is a wide variety of
recipes to choose a, including the ‘‘L” curve method, generalized
and ordinary cross validation, the ‘‘S” curve method, predictive
mean square error, and self-consistency methods [8–11]. These

http://dx.doi.org/10.1016/j.jmr.2010.05.015
mailto:lvenkataramanan@slb.com
http://dx.doi.org/10.1016/j.jmr.2010.05.015
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr


−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

 
n

μ

Fig. 1. Variation of n and l with x, as given by Eq. (5b). For example, when x = �1,
n = 2 and l = 1. When x = �0.2, n = 1 and l = 0.8.
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different methods provide different values of a and result in dif-
ferent solutions fT2 ðT2Þ, all of which provide reasonable fits to the
data.

In this paper, we build on the work in companion papers to
compute the moments of T2 directly from the measured data
[12,13]. These moments are computed using Mellin transform
(MT) of M(t) and its time-derivatives. In applications where the
parameter T2 spans decades, quantities such as hlnT2i and rln T2

are of immediate interest. The MT can also be used to compute
the cumulant generating function of lnT2. In addition, expressions
are derived for uncertainty in the moments due to additive noise in
the measured data. This new method obviates the need to compute
moments from fT2 ðT2Þ estimated by the ill-conditioned ILT method.
The performance of the MT as well as expressions for uncertainty
are validated via simulations.

This paper is organized as follows. In the next section, we de-
scribe applications of the Mellin transform to CPMG data. In Sec-
tion 3, we present the implementation details to compute
moments and associated uncertainties. In Section 4, we compare
the performances of the MT method with the traditional ILT meth-
od on a number of simulations at different signal-to-noise ratios
(SNRs).
2. Moment estimation of T2 relaxation using Mellin Transform

In this section, we provide expressions for moments of T2 as a
function of the measured CPMG data using the Mellin transform.
We also describe some of the salient properties of Mellin transform
which are useful while analyzing CPMG data where the relaxation
time T2 may span decades. The x-th moment of T2 is defined as

Tx
2

� �
�
R1

0 Tx
2 fT2 ðT2ÞdT2R1

0 fT2 ðT2ÞdT2
; x 2 R; ð3Þ

where the area
R1

0 fT2 ðT2ÞdT2 is referred to as the porosity,

/ ¼
Z 1

0
fT2 ðT2ÞdT2: ð4Þ

In general, when the density function fT2 ðT2Þ is known, the mo-
ments of T2 can be computed in a straight-forward manner from
Eq. (3). However, in our problem, fT2 ðT2Þ is unknown. Our recent
work described in [12,13] demonstrates that when the measured
data and density function are related by Eq. (1), then Tx

2

� �
can be

computed from a linear transformation of M(t),

Tx
2

� �
¼ ð�1Þn

CðlÞ/

Z 1

0
tl�1 dnMðtÞ

dtn

� �
dt; ð5aÞ

x ¼ l� n; with
n ¼ 0 if x > 0;
n ¼ ½�x� þ 1 otherwise:

�
ð5bÞ

Here C() represents the Gamma function; it is a generalization
of the factorial function when x is a non-integer. The notation [x]
refers to the integral part of the number x. The contribution of var-
iable x is in two parts: a real number l and an integer n where the
mathematical operator tl�1 is applied on the n-th derivative of the
data. The variation of n and l with x is given in Eq. (5b) and shown
in Fig. 1. For example,the 0.2-th moment of T2, related to perme-
ability may be computed using Eq. (5) as

T0:2
2

D E
¼ 1

Cð0:2Þ/

Z 1

0
t�0:8MðtÞdt: ð6Þ

Similarly, the (�0.4)-th moment of T2 related to irreducible
water-saturation in rocks can be computed as

T�0:4
2

D E
¼ �1

Cð0:6Þ/

Z 1

0
t�0:4 dM

dt

� �
dt: ð7Þ
Eq. (5) can be proven from the perspective of fractional calculus.
From Eq. (1), it is seen that integer moments of T2 can be obtained
by integration or differentiation of the data. For example,

hT2i ¼
1
/

Z 1

0
MðtÞdt; ð8aÞ

1
T2

� �
¼ � 1

/
dM
dt

				
				
t¼0
; ð8bÞ

1
T2

2

* +
¼ 1

/
d2M

dt2

					
					
t¼0

: ð8cÞ

A natural extension of Eq. (8) to fractional moments results in
Eq. (5) where the regions x > 0 and x 6 0 correspond to fractional
integration and differentiation of the measured data, respectively
[12].

Eq. (5) can also be proved from the definition of the Gamma
function and the Mellin transform [13]. When the integral operator
tl�1 is applied to a signal M(t), the resultant signal is referred to as
the Mellin transform of M(t) [14]. Thus, from Eq. (5), the positive
moments of T2 are obtained from the Mellin transform of M(t).
The negative moments are obtained from the Mellin transform of
time-derivatives of M(t).

As seen in Eq. (5), the fractional moments or Mellin transform
results in a linear transformation of the measured data. In applica-
tions such as fluid characterization in porous media, where T2

spans decades, the statistical properties of lnT2 are of direct inter-
est. In this case, let

GðxÞ � lnhTx
2 i: ð9Þ

The mathematical properties of G(x) are described in [13]. First,
G(x = 0) = 0. Second, as given in Eq. (1), when the data has asymp-
totically decayed to zero, G(x) is a smooth, continuous function of
x. Lastly, G(x) is the cumulant generating function of lnT2 with
the first and second derivatives providing the mean and variance
of lnT2,

dG
dx
jx¼0 ¼ hln T2i;

d2G
dx2 jx¼0 ¼ r2

ln T2
: ð10Þ

Higher order cumulants of lnT2 are obtained by taking higher-
order derivatives of G(x) with respect to x.

Fig. 2 illustrates these properties with examples. When fT2 ðT2Þ is
the Dirac delta function with d(T2 � T0), the corresponding G(x) is
a straight line with a slope of ln(T0). When the density function is a
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Fig. 2. Examples of two density functions and their cumulant generating functions. (A and B) The Dirac density function has a value of 1 at 0.1 s. The corresponding
G(x) = �2.3026x. (C and D) flog(T) is normal with hlog10Ti = 0.1 s and rlog10 ðTÞ ¼ 0:1 (blue), 0.2 (green) and 0.3 (red). The corresponding G(x) is a quadratic with
GðxÞ ¼

r2
ln T2

2 x2 þ hln T2ix. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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normal distribution with mean hlnT2i and standard deviation rln T2 ,
the corresponding G(x) is a quadratic function

GðxÞ ¼
r2

ln T2

2
x2 þ hln T2ix: ð11Þ

Fig. 3 shows synthetic magnetization decay data M(t) with
additive noise together with the corresponding G(x) computed
using Eqs. (5) and (9). In addition to directly providing the x-th
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Fig. 3. (A) Simulated magnetization data at a poor signal-to-noise ratio. (B) Correspondin
and directly provides moments of T2. It is also the cumulant generating function of lnT2
moment of T2, the slope and curvature of G(x) at the origin yield
hlnT2i and rln T2 , respectively. Superimposed on G(x) are the er-
ror-bars obtained from the MT analysis of data with different
realizations of noise. Note that the error-bars are larger for nega-
tive values of x. This is expected since the computation of nega-
tive moments involves taking time-derivatives of the data. Taking
time-derivatives is akin to a high-pass filter operation and results
in noisy estimates of the negative moments. A new method to get
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g G(x) computed using Eqs. (5) and (9). The function G(x) is smooth and continuous
.
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around computing numerical derivatives is described in [13] and
used in this figure to compute the negative moments. When the
initial part of the data is well-characterized, this new method
takes advantage of a Taylor-series expansion (TSE) of the initial
decay along with re-writing of Eq. (5a). This helps provide a ro-
bust estimate and considerably decreases the error-bars in G(x)
for x 6 0.
3. Implementation details

This section describes the implementation details for comput-
ing moments using Eq. (5). In addition, this section provides ana-
lytical expressions for the estimation of uncertainty in the
moments due to uncertainty in the measured data due to additive
noise. Let r� denote the standard deviation of the noise at each
echo. It is assumed that this parameter is known. Expressions for
the uncertainty in moments of T2 and lnT2 are derived in terms
of the SNR //r� of the data.
3.1. Estimate of porosity / and associated uncertainty r/

An important parameter required to compute the moments is
the porosity /. As seen from Eq. (4), porosity corresponds to the
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Fig. 5. Estimate of mean T2,LM of T2 distribution from Dirac-delta model at high SNR: The
estimated standard deviation of parameter T2,LM matches the true standard deviation re

Fig. 4. The work flow used to compare MT and ILT methods. The data M(t) is an input to
mean and width, T2,LM and rlog10

ðT2Þ and porosity /1 are computed. In the MT, an addition
linear combination of the ILT method and Taylor-series expansion (TSE) of the initial dec
associated uncertainties.
area under the T2 distribution. From Eq. (1), it also corresponds
to the unmeasured datum at t = 0. A commonly used method
to compute porosity involved computing the complete T2 distri-
bution using the ILT method and computing its corresponding
area. This method often results in an over-estimate of porosity.
The approximate value of this bias can be pre-computed based
on the SNR in the data and the porosity estimate corrected for
the bias [15]. A second method involves Taylor-series expansion
of the first few data points with extrapolation to t = 0. Let /1;r/1

and /2;r/2 denote the estimated porosities and associated
uncertainties obtained from the two methods. In practice,
both of these methods provide reasonable estimates of / and
r/ as long as there are no decays on the order of the echo-
spacing tE.

A straightforward weighted linear combination of the two
estimates of porosity will have a variance smaller (or at worst
the same) as that of the original estimates. Let a weighted-
linear estimate of porosity be denoted by / with standard
deviation r/,

/ ¼
r2

/2

r2
/1
þ r2

/2

 !
/1 þ

r2
/1

r2
/1
þ r2

/2

 !
/2; ð12Þ

1
r2

/

¼ 1
r2

/1

þ 1
r2

/2

: ð13Þ
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MT has a lower bias and smaller variance in comparison to the ILT. In addition, the
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both methods. The output of the ILT method is the T2 distribution, from which its
al input is the porosity / which is computed as described in Section 3 as a weighted
ay. The output of the MT method are the mean and width of the T2 distribution and
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The weights are chosen to provide an unbiased estimate and are
based on the variances of the two porosity estimates: the smaller
the variance of the estimated porosity, the larger the weight given
to the estimate.
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log10ðT2 Þ of T2 distribution from Dirac-delta model at low SNR: T
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shown in the zoomed-in plot, the average relative error from MT and ILT are about 10%
poor estimate of porosity. (B) The estimated standard deviation of T2,LM matches the tru
3.2. Estimate of uncertainty

Let a random variable y be a function of random variables
X = [x1, x2, . . . ,xN]. This sub-section provides expressions to
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compute the mean and variance of y in terms of the mean and
covariance of X. Let

y ¼ gðXÞ: ð14Þ

Let gX and RX denote the mean and covariance of X, respec-
tively. If the function g() is approximated with a first-order Tay-
lor-series expansion around its mean, then the mean and
variance of y, denoted by gy and r2

y , are

gy ’ gðgXÞ; ð15Þ

r2
y ’ JRXJT where J ¼ @g

@x1

@g
@x2
� � � @g

@xN

� �
gX

: ð16Þ

In the following sub-section, the variable y typically denotes
the moments of Tx

2

� �
. The variable X typically denotes the mea-

sured data, porosity, and information about initial time-decay
(such as the slope at t = 0). Thus, using Eq. (16), the uncertainties
in the moments are computed as a function of the uncertainties
in the measured data, porosity, and slope at initial times. In turn,
these uncertainties in the moments are translated into uncertain-
ties in the parameters hlnT2i and rln T2 . Thus, we obtain analytic
expressions for the uncertainties in moments in terms of the SNR
//r� and relative error in porosity //r/.

3.3. Estimate of moments and their uncertainty

For a given value of x, the moments are computed as follows.

Case 1: When x = 0, by definition, Tx¼0
2

D E
¼ 1.

Case 2: When x > 0, Eq. (5) yields
Tx
2

� �
¼ 1

CðxÞ/

Z 1

0
tx�1MðtÞdt: ð17Þ
By discretizing the integral in Eq. (17), this moment is computed as
a weighted linear combination of the data [13],
Tx
2

� �
¼ kþ 1

Cðxþ 1Þ/
XN

i¼1

DiMðitEÞ; ð18Þ
where
k ¼ smin

Cðxþ 1Þ is a constant; ð19aÞ

smin ¼ tx
E ; ð19bÞ

D1 ¼ 0:5txE ½2
x � 1x�; ð19cÞ

Di ¼ 0:5txE ½ðiþ 1Þx � ði� 1Þx�; i ¼ 2; . . . ;N � 1 ð19dÞ
DN ¼ 0:5txE ½N

x � ðN � 1Þx� ð19eÞ
Thus, for a given tE and N, the positive moments are a straightfor-
ward linear transformation of the data.

Case 3: When �1 < x < 0, Eq. (5) yields
hTx
2 i ¼

�1
Cðxþ 1Þ/

Z 1

0
tx

dM
dt

� �
dt ð20Þ
As mentioned previously, when the initial part of the data is
well-characterized, a Taylor-series expansion of the initial decay
can help provide a robust estimate of negative moments and con-
siderably decrease the error-bars in G(x) for x 6 0 [13]. In this
case, after a suitable integration by parts, Eq. (20) can be re-written
as

Tx
2

� �
¼ 1

CðxÞ/

Z 1

0
tx�1½MðtÞ � /�dt ð21Þ

This can also be implemented as a weighted linear combination
of the data,

Tx
2

� �
¼ kþ 1

Cðxþ 1Þ/
a1x

xþ 1


 �
s

xþ1
x

min þ
XN

i¼1

DiMðitEÞ
" #

ð22Þ

where k, smin, and Di (for a given value of x) are given in Eq. (19)
and a1 ¼ dM

dt

		
t¼0. Thus, for a given tE and N, the negative moments

are also computed via a straightforward linear transformation of
the data.

Since each moment is evaluated as the weighted linear combi-
nation of the data, the variance of each moment due to noise is also
easily computed analytically. When x > 0, from Eqs. (16) and (18),
we get

r2
hTx

2 i
¼

P
iD

2
i

C2ðxþ 1Þ
r�
/


 �2

þ Tx
2

� �
� k

� 
2 r/

/


 �2

: ð23Þ

When �1 < x 6 0, from Eqs. (16) and (22), we have

r2
hTx

2 i
¼

P
iD

2
i

C2ðxþ 1Þ
r�
/


 �2

þ Tx
2

� �
� k

� 
2 r/

/


 �2

þ xs
xþ1
x

min

Cðxþ 2Þ

 !2
ra1

/


 �2

: ð24Þ

The three terms in Eq. (24) are due to the uncertainties in the
measured data, the estimated porosity, and the initial time-decay,
respectively.

From the computed moments, the function GðxÞ ¼ ln Tx
2

� �
is

easily computed. Let Rx denote the diagonal covariance matrix
of the moments computed using Eq. (23) for different values of
x. The covariance of G(x) is computed using Eq. (16),
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RG ¼ JRxJT ; J ¼ 1
Tx1

2

� � 1
Tx2

2

� � � � �
" #

: ð25Þ

A weighted least squares quadratic fit to function G(x) esti-
mated for various discrete values of x is used to directly provide
hlnT2i, rln T2 , and their corresponding standard deviations.
Table 1
Parameters used to simulate data for models A–D.

Model number tE (ls) N

A 800 8000
B 2000 6000
C 200 2000
D 500 5000

Table 2
Estimate of porosity at the two different SNRs. The means and standard deviations are
obtained from 1024 different realizations of data simulated from each model.

Model re = 0.02 re = 0.2

A 1 ± 0.002 1.01 ± 0.024
B 1 ± 0.004 1 ± 0.037
C 0.95 ± 0.011 0.89 ± 0.048
D 1 ± 0.003 1.01 ± 0.029
4. Simulation results

In this section, we have two main objectives. First, we evaluate
and compare the performances of the MT method with the tradi-
tional ILT method. For simplicity, we compare their performances
in estimating the mean and width of T2 distributions. Second, we
compare the estimated uncertainties in these parameters com-
puted from expressions given in Section 3 with the true uncertain-
ties. True uncertainties are obtained from the analysis of data
consisting of the same underlying noiseless signal but combined
with different noise realizations.

Noiseless data are simulated from specified T2 distributions and
corrupted with different levels of additive zero-mean, white,
Gaussian noise with standard deviation r�. The true porosity is
unity. Random white Gaussian noise with r� = 0.02 or 0.2 was
added to the noiseless signal to simulate noisy data representing
data at high and low SNR, respectively.

The work flow used to compare MT and ILT methods is shown
in Fig. 4. The noisy magnetization data M(t) is an input to both
methods. The outputs of the ILT method are the porosity and
the mean and width of T2, computed from the estimated T2 distri-
bution. To solve Eq. (2), the T2 values were discretized at 100 log-
arithmically spaced points between 2tE and 10 s. 20 singular
values were chosen when the kernel e�t=T2 was discretized. The
data were analyzed with a = 1 and 100 in Eq. (2) at the two SNRs,
respectively. These values of a are typical for analyzing data at
these SNRs.

In the MT method, an additional input is the porosity /. This
was computed as a weighted linear combination of ILT and Tay-
lor-series expansion methods described briefly in Section 3. The
output of the MT method are the mean and width of the T2 distri-
bution and associated uncertainties. In the MT method, the mean
and width of the T2 distribution are estimated from Eq. (10) where
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Fig. 11. Histograms of parameter T2,LM from analysis of 1024 data sets simulated from models A–D at high SNR: The true and mean values of T2,LM are indicated. With the
exception of model C, the MT estimate of T2,LM has a lower bias and variance.
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the first and second-order derivatives were computed with a
weighted least squares quadratic fit of G(x) using 30 discrete val-
ues of x between �0.5 and 1.

Performances of the algorithms are based on two criteria: the
bias and the variance of the estimated parameters. Bias denotes
the relative error in a parameter estimate. The bias and variance
are computed in reference to the true values from the mean and
variance of the parameters obtained from analyzing data with mul-
tiple realizations of noise. An unbiased method with low variance
is desirable.
4.1. Dirac-delta function

Data was simulated from Dirac-delta function in the T2 domain,
where the time constant of the delta function was varied system-
atically from 1 ms to 2 s. Synthetic single exponential echo-decay
trains were simulated with tE = 500 ls. Random white Gaussian
noise with r� was added to the noiseless signal to simulate noisy
data. The data were analyzed with MT and ILT methods. The results
are summarized in Figs. 5–9. We make the following observations:
1. Estimate of mean of T2 distribution at high SNR: In applications
where parameter T2 spans decades, the parameter T2,LM, defined
as,
T2;LM ¼ 10hlog10ðT2Þi; ð26Þ

is used to denote the mean of the T2 distribution [1]. Using the
MT described in this paper, the parameter hlog10(T2)i was com-
puted from the slope of the function log10 Tx

2

� �
. From Eq. (16),

the uncertainty in T2,LM is obtained in terms of the mean and
standard deviation of log10(T2),

rT2;LM ¼ ðln 10ÞT2;LMrhlog10ðT2Þi: ð27Þ

The relative error in T2,LM as well as the estimated and true
standard deviations (obtained from 400 noise realizations)
are shown in Fig. 5. It is seen that the MT does reasonably
well with an average of 2% relative error in comparison to
the ILT method which has 8% relative error. The true and esti-
mated standard deviations are shown in Fig. 5B. It is seen that
the ILT method has a larger variance in comparison to the MT
method. In addition, the estimated standard deviations com-
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Fig. 12. Histograms of parameter T2,LM from analysis of 1024 data sets simulated from models A–D at low SNR: The true and mean values of T2,LM are indicated. With the
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pare reasonably well with the true estimates of the standard
deviation of the parameter for large values of T2 when the
porosity is estimated reasonably well.

2. Estimate of width of T2 distribution rlog10T2 at high SNR: Since
the T2 distribution is a Dirac delta function, it has no width
and the true value of rlog10ðT2Þ is zero. The bias in this parameter
from MT and ILT is shown in Fig. 6A. The MT estimates the
parameter to be close to zero, whereas there is a significant bias
from the ILT method. Similarly, the estimated standard devia-
tion of the parameter matches the true value reasonably well
in Fig. 6B, whereas the ILT method estimates the parameter
with a large variance.

3. Estimate of mean T2,LM at low SNR: At longer relaxation times
when porosity is estimated well, the MT performs better than
the ILT (see Fig. 7A). As shown in the zoomed plot, at these long
relaxation times, the MT does reasonably well with an average
of 10% relative error in comparison to the ILT method which has
15% relative error. However, at shorter relaxation times when
the porosity is estimated poorly (for example, for T2 < 30 ms),
the ILT method outperforms the MT method. It is also observed
in Fig. 7B that the estimated standard deviation of T2,LM matches
that of MT at long relaxation times.

4. Estimate of width rlog10ðT2Þ at low SNR: The bias and variance in
this parameter from MT and ILT is shown in Fig. 8A and B
respectively. The MT method performs better with smaller bias
and lower variance at long relaxation times. On the other hand,
the ILT method has a slightly larger bias and a comparable var-
iance for almost the entire spectrum of relaxation times. In
Fig. 8B, at long relaxation times, the estimated standard devia-
tion from the MT method matches the true standard deviation
reasonably well.

These results highlight an important characteristic of the MT
estimates: its sensitivity to the input porosity in Eq. (5). Fig. 9 fur-
ther illustrates this showing the inverse correlation between the
porosity and the T2,LM estimates for this model.
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Fig. 13. Histograms of width rlog10ðT2Þ of T2 distribution from analysis of 1024 data sets simulated from models A–D at high SNR: With the exception of model C, the MT
outperforms the ILT method and has a lower bias and variance.
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4.2. Models A–D

Consider various T2 distributions as shown in Fig. 10. For ease of
comparison, all distributions are normalized to have a porosity of
unity. Noiseless signals were simulated from these distributions
with parameters given in Table 1. White, Gaussian noise was added
to these signals to simulate good and poorer quality data sets with
r� = 0.02 and 0.2, respectively. The mean and variances for the dif-
ferent parameters were obtained from analysis of 1024 realizations
of noise at each SNR for each model.

Estimated porosity for the different models and at the two SNRs
is given in Table 2. We note that the estimate of porosity is unbi-
ased with the exception of model C, where 2% of the porosity is be-
low tE and is, therefore, not measured.

The ILT and MT methods are used to analyze the data and esti-
mate the mean T2,LM and width r2

log10ðT2Þ of the T2 distribution. The
results of this analysis are summarized in two different ways. First,
histograms of the parameters T2,LM and r2

log10ðT2Þ obtained from
analysis of 1024 data sets at two different SNRs are shown in
Figs. 11–14. Second, these results are also summarized in Table 3.
We make the following observations:

1. Bias in T2,LM: With the exception of model C (where the
porosity is estimated with a bias), the MT method outper-
forms the ILT method. The bias (relative error) from the MT
is much smaller than that from the ILT method. This is seen
in Figs. 11 and 12 and Table 3. For example, the true value
of T2,LM for model A is 667 ms. At high SNRs, the mean value
of this parameter from MT and ILT methods are 669 and
646 ms, respectively.

2. Relative uncertainty in T2,LM: The estimated uncertainty in T2,LM

is computed from
rT2;LM
T2;LM

using Eqs. (26) and (27). The true uncer-

tainty is estimated from analysis of 1024 realizations of the data
using MT and ILT methods. The true and estimated uncertainties
compare reasonably well in Table 3. For example, for model A at
high SNRs, the error-bar in T2,LM using the MT method be 1%. The
estimated error-bar from Eq. (27) is 0.4% and is therefore a good
approximation. On the other hand, the error-bar from the ILT
method is about 4% and much larger than that from MT method.
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Fig. 14. Histograms of width rlog10 ðT2 Þ of T2 distribution from analysis of 1024 data sets simulated from models A–D at low SNR: With the exception of model C, the MT
outperforms the ILT method and has a lower bias and smaller variance.
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3. Bias in r2
log10T2

: As seen in Figs. 13 and 14, the ILT method over-
estimates the width of the T2 distribution (with the exception of
model C). On the other hand, the MT method does a more rea-
sonable and unbiased estimate of the width. For example, for
model A at high SNRs, the true width is 0.02. The estimated
width of 0.02 from MT matches the true width. The width from
the ILT method is 0.05 and much larger than the true width.

4. Relative uncertainty in r2
log10T2

: It is seen that the estimated
uncertainty compares reasonably well with the true uncertainty
obtained with the MT method. On the other hand, the estimated
uncertainty of this parameter from the ILT method is very large.
The ILT method not only overestimates the width but also has a
huge variance in this parameter. For example, for model A at
high SNRs, the width from the MT has an error-bar of 13%.
The estimated error-bar based on SNR of the data is 12% and
matches the true error-bar quite well. On the other hand, the
error-bar from the ILT is 96%.

The simulation results described in this section are representa-
tive of results on a number of models at varying SNRs and for dif-
ferent values of a in Eq. (2). In summary, as seen in Eqs. (23), (24)
and Fig. 9, the MT is sensitive to the input porosity. When the
porosity is estimated well, the MT outperforms the ILT with a low-
er bias and variance of the estimated parameters. On the other
hand, the results from the ILT method are systematically biased.
The mean of the T2 distribution is smaller than the true value.
The width of the T2 distribution is systematically larger. These re-
sults are illustrated in Fig. 15. The estimated T2 distributions from
data simulated from Model A with 10 different noise realizations
with r� = 0.02 are shown. The bias seen in the previous results
for the ILT case are, to a large extent, caused by artifacts at the
beginning of the estimated distributions, which result in a de-
creased mean and increased width for the T2 distribution.
5. Summary

This paper describes a new method to compute moments of the
transverse relaxation time T2 from measured CPMG data. The
new method is based on the Mellin transform of the data and its



Table 3
Results of analysis of 1024 data sets at two different SNRs for different models using
MT and ILT methods.

Model Parameters True value High SNR Low SNR

MT ILT Est. MT ILT Est.

A T2,LM (ms) 667 669 646 641 583
rT2;LM % 1 4 0.4 5 8 3.7

r2
log10 T2

0.02 0.02 0.05 0.03 0.1

rr2
log10 T2

% 13 96 12 66 68 57

B T2,LM (ms) 883 903 855 879 778
rT2;LM % 1 4 0.5 8 11 4.1

r2
log10 T2

0.1 0.09 0.13 0.1 0.19

rr2
log10 T2

% 3 31 3 23 35 20

C T2,LM (ms) 18 24 21 30 22
rT2;LM % 3 7 0.8 9 12 5.2

r2
log10 T2

0.43 0.15 0.28 0.08 0.28

rr2
log10 T2

% 6 15 3 31 18 31

D T2,LM (ms) 300 303 291 291 263
rT2;LM % 1 4 0.5 6 8 3.8

r2
log10 T2

0.04 0.03 0.07 0.05 0.12

rr2
log10 T2

% 7 61 7 43 48 38

10
−3

10
−2

10
−1

10
0

10
1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

artifacts
causing bias

Fig. 15. Estimated T2 distribution for 10 realizations of noise corresponding to
Model 2. The plot shows the artifacts at the beginning of the distribution that cause
the bias in the results seen in previous plots.
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time-derivatives. This method can also be used to generate the
cumulant generating function of lnT2 directly. The inputs to the
MT are the measured magnetization data and the porosity. The
output of the MT are the moments of relaxation time, the cumulant
generating function G(x), as well as uncertainties in these
parameters.

We discuss the properties and numerical implementation of the
transform. The transform is linear and computed in a straight-for-
ward manner. It takes, on an average, about a fraction of a second
of CPU time to compute the parameters on a laptop D600PC with a
2.6 GHz processor.

The performance of the algorithm is compared with the tradi-
tional ILT method on simulated data. It was found that the MT
method performs better than the ILT method when the porosity
is well-determined. The ILT method often underestimates T2,LM

and overestimates the width.
The relation between the SNR and the uncertainty in parame-

ters such as T2,LM and the width of T2 distribution has always been
unclear. For example, if the SNR is an order of magnitude better, is
the uncertainty in T2,LM about an order of magnitude lower? Ana-
lytic expressions for the uncertainty derived in this paper can help
address this issue by relating the uncertainty in moments to the
SNR in the data.
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